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Abstract

.- The bootstrap is proposed as a method for estimating the precision of

forecasts and estimates of parameters of the Kalman Filter model. It is

shown that when the system and the filter is in steady state the bootstrap

applied to the Gaussian innovations yields asymptotically consistent standard

errors. That the bootstrap works well with moderate sample sizes and supplies

robustness against departures from normality is substantiated by emperical ev-

idence.
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1. Introduction

The Kalman Filter (KF) has become an important and powerful tool for the

statistician. Recently, many authors have exploited the state-space model and

KF recursions for estimation and prediction of time series. For example,

Jones (1980) and Harvey and Pierse (:984) use the KF to obtain maximum likeli-

hood estimates of the parameters of ARMA processes when observations are miss-

ing. It has been suggested by Morrison and Pike (1977) and others (cf. Kendall

(1973)) that the KF model provides an appropriate setting within which to

parametrize smoothing and forecasting problems.

To be specific, we suppose that a pxl vector time series {y t; t =0,+_+2,...}

is being generated by the following dynamic system

Yt = x +vt (.)

where xt is a zero mean, pxl vector stationary stochastic signal, and vt is

pXl Gaussian white noise, v t -N(0,R). The dynamics of the stationary signal

is given by

x t =D xt I +w t  (1.2):

where P is the pxp transition matrix and w t is pxl Gaussian white noise,

wt -N(O,Q). Furthermore, {v and {w are mutually independent and we assume
tt t

that the system and the filter have reached steady state. We remark that the

superficially more general model in which (1.1) is replaced by

Yt Mx +vt

where M is a nonsingular known design matrix may be reduced to (1.1) by an

appropriate change of bases.

• -".. .. .. ....".: "--.-"" "----.--- .- ,.. .-" .-- '.- l:.""-__-----_"--"-_--
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Given the parameters of the model, namely, D, Q and R, one may obtain the

minimum mean square error filter and forecasts for the system via the KF re-

cursions. However the parameters are rarely known and hence must be estimated.

It is clear that an inexact filter model will degrade the filter perfor-

mance. In fact, such an inexact model may cause the filter to diverge (cf.

Jazwinski (1970), pp. 244-251). Hence, the precision of the parameter esti-

mates must be evaluated. We propose the bootstrap as a method to evaluate the

precision of parameter estimates, in particular, to handle heteroscedasticity,

to provide robustness against departure from normality in the Gaussian state

and observation errors, and to assist in estimating forecast errors.

Computationally simple estimates of the parameters of the KF model have

been given by Anderson, Kleindorfer, Kleindorfer, and Woodroofe (1969) which

we henceforth denote by AKKW. Their estimates, which are discussed in Section

4, are based on standard ergodic theory and yield strongly consistent estimates of

0, Q and R under minor restrictions. Hence these estimates, which do not assume

a Gaussian likelihood, have none of the drawbacks of the iterative maximum

likelihood techniques such as Newton-Raphson or scoring (cf. Gupta and Mehra

(1974)) or the EM algorithm (cf. Shumway and Stoffer (1981) and Wu (1983)) which

may not converge or converge to the wrong stationary point.

We suggest that for the KF model, the AKKW estimates are the most reason-

able to bootstrap since the theory driving the estimators is sound. We make

bootstrapping these estimates appealing by showing in Section 5, that the

bootstrap gives the right answers with large samples, that is, it is at least

as sound as the conventional asymptotics. Moreover, if the investigator of

such a system would rather rely on a maximum likelihood iterative scheme for

parameter estimation, the AKKW estimates could be used to initialize such

j[
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iterative procedures since, as will be seen, the bootstrap will work for the

initial estimates.

Finally, in Section 6, we give emperical evidence of the bootstrap's im-

portance in Kalman filtering by comparing the bootstrap to the conventional

asymptotics in the cases when the likelihood is Gaussian and when the likeli-

hood is contaminated Gaussian. An example from hydrology is also given.

Our goal is to estimate the precision of the parameter estimates of 4, Q

and R, as well as the precision of the forecasts Xn+lxn+2, ... Xn+k . The

techniques used here are based on the bootstrap (cf. Efron (1979)) and the methods

used in bootstrapping least squares estimates discussed in Bickel and Freedman

(1981), Freedman (1981) and Freedman and Peters (1984). It is noted in the

above references that in regression models (static or dynamic), it is appropriate

to resample the centered residuals after estimating the parameters. This is

not possible in the present model (1.1) and (1.2) since the signal is not

observable. However, we may base the procedure on the innovations which are

obtained by taking the conditional expectation of the signal given the data.

Hence, the bootstrap procedure will involve the resampling of the innovation

sequence

t-t-
rt Yt-Xt , t l,...,n (1.3)

t- 1 t
where by xt we mean E(x jOf course x will be obtained re-w o lt

cursively via the KF.

Under the conditions stated in the next section we will be able to put this

problem into the nonlinear regression context as discussed in Efron (1979,

Section 7). That is, we may write

.. - ..-.

,- ... .,. .. ,.% .- . . . . . , ..-. ,.. . .,. . . . . . - ........ , -, .. ,.-...-.,-.,''
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yt gt (4 Q R x t 'pYl " '' Yt- i
)  + Ct ' t - 1,2,...,n

whee earelidzeo man andm vctrs (namely, the innovations) and g~( is

t

a particularly complicated, but known, nonlinear function of the parameters

t-l
4 , Q, and R, the signal xt , and the data yl,...,Ytl. In particular, g t(-) x

t

the filtered value of the signal.

In the next section we give conditions under which we are able to boot-

strap the innovations, (1.3). The bootstrap procedure is given in Section 3.

2. The Steady-State Innovation Sequence

Throughout the remainder of this paper we make the following assumptions

on the pXp parameter matrices: (Al) Q and R are positive definite, and

(A2) 4 is nonsingular with spectal norm, p(4), less than unity. These condi-

tions ensure the asymptotic global stability of the KF (cf. Deyst and Price

(1968)).

The steady-state KF recursions are given by (of. Jazwinski (1970))

K = P(P+R)- 1, (2.1a)

P - (D[P-P(P+R) P] D' +Q, (2.1b)

t t (2.1c)xt+
t+l = tI
t t-l t-lxt fxt  +K(y - x . (2.1d)

In the KF above, K is the steady-state gain matrix, P is the steady-state

t t-i t- E
filter error, P = E{(x -xt )(xt-x t  )'}, and xt . is the

steady-state filter estimate of xt based on the data Y''''y-

Proposition 2.1 Under steady-state and optimal filtering, the pxl vector inno-

vation sequence

• . , " " " . ' . .' " . .' . > ?. . .' - . - __ - _ ... ". -. . ,. -"



t-l t-i

is a zero-mean, white Gaussian sequence with covariance matrix P+R.

t-l t-l
Proof Write rt .et +vt where et x t-xx - and note that E(e )=E(v )=0.

The rt- I are Gaussian since they are linear combinations of Gaussian random vec-r

tors. To establish the orthogonality of the innovations, it is easy to see that
-t-l)
(while r ( y -x ) is in the linear space spanned by {YI"'Yt}

t t t

rt-1 (= e +v ) is orthogonal to the linear space spanned by {yl,...,Ytl
} .

t t t

Hence, for s<t,

E(r S1r t-1) E{r S1E(rjy11=0

Also, since et and vt are uncorrelated we have that

t-l
Cov(r t) Cov(e t +Cov(v = P+R.

As a final remark, we note that via (2.1c) and (2.1d), we may write y

in terms of the steady-state innovations as

S DjK rt-j-i +rt-1  (2.3)Yt = jl t- t

which follows from the fact that 40 1- 0 exponentially fast as j -o since

2
0(0) <1, where j14f 2  trace(V'P). This result will be useful in establish-

ing the bootstrap procedure.

3. The Bootstrap Estimate of Precision

As previously mentioned, the bootstrap technique will be employed by re-

sampling the steady-state innovation sequence. Recall that under optimal

t-1
filtering the innovation sequence rt , t=l,...,n is pxl Gaussian white noise,

•.............+. ......-....... ..... ..... .. ... .+. .+..-.. ., - .•........ . .. •i
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t-i
rt  N(O,P+R) where P is the steady-state error covariance matrix given in

(2.lb).

The bootstrap procedure begins be estimating the parameters 0 = {$,Q,R} of

the model (1.1), (.1.2) by some optimal procedure as mentioned in the Intro-

duction. We shall discuss a particular method in Section 4. Call these esti-

mates 0 = {OQ,R}.

From these preliminary estimates obtain a suboptimal innovation sequence

A t-l
by filtering (cf. 2.1) under 0. Call this innovation sequence r -t . Make the

A tln
sequence {r -l} =l independent and identically distributed with distribution

equal to the emperical distribution by putting mass n on each innovation
^t-l
rt . t ffi1,...,n.

*t-i
Next, draw a "bootstrap sample" of innovations, rt  , til,...,n by

t^t-i

independent random sampling of the residuals r-1. That is, sample the rt  ,n
0 ^ An-l}.Fo hsw bana"ot

times, with replacement from rr,...,r From this we obtain a "boot

strap sample" of data yl,...,y n by setting (cF. 2.3)

* *ti +t-i Aj K *t-j-i l
Yt rt l rt+ Oj K tj, t =,... ,n (3.1)

where K is the estimated gain matrix obtained via filtering under parameters

e.

We make the following suggestions before proceeding with step (3.1).
^t-l

First, as suggested in Freedman (1981), one should center the residuals rt
-l

before resampling them so that the emperical distribution puts mass n on
^t-i 1n^-

r pn where i n n tfrft . Second, we suggest checking whether the innova-

tions are white. It is known that a suboptimal filter produces correlated in-

P-1

.. . . . .. ... . . .
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novations (see, for example, Mehra (1970)) and hence this is a check on the

"goodness" of the estimates. Various methods are available for testing the

whiteness of the innovations many of which are listed in Mehra (1970).

Now, suppose that the bootstrap data yl*,...,y*n come from the model

1 n

Y tXt +vt t > , (3.2a)

xt D Xl+wt t > , (3.2b)

where vt is pxl Gaussian white noise v t ~N(0,R ) and is independent of w t which

is pXl Gaussian white noise wt  N(0,Q ). Assume the parameters 0=t*,Q ,R

are unknown and to be estimated.

The parameters 0 are then estimated by the initial optimal procedure to
A A* A* A*

produce estimates 0 = {4 ,Q ,R }. Then, the suboptimal innovation sequence

is resampled and the bootstrap procedure is reiterated.

The entire process is repeated some large number "L" of times obtaining

L bootstrap replications .02,.... 0L . The distribution of the errors

A* A A* ^ A* A

4 -D, Q -Q, R -R (3.3)

are then computed to give an approximation as to the distribution of

A A

- D, Q-Q, R-R. (3.4)

The bootstrap distribution of the errors (3.3) may then be used to obtain con-

fidence regions and tests of hypotheses about the parameters 0. Justification

of this procedure is given in Section 5, Theorem 5.1.

n
Forecasting k steps into the future, say X =

j -1,2,...,k is easily accomplished via the filter equations (2.1), namely

°I"•

.*.*. . . . . .. . . . . . . . . . . . . . .
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BJ

x -* n, j=1i ,...,k. (-5n+j n

The suboptimal forecasts will be obtained via the KF under parameter estimates

0so that

= 
f Jt . j 1,...,k (3.6)

will be the actual forecasts. If at each bootstrap replication we obtain

^n * (1) *n* n*(L){xn+l ,...,n+ k }  ,.,{n+l, .. • •,n+k } 37

we may extract the emperical distribution of the forecast residuals

*n* n n
Xn+j - Xn+j, J=l...,k (3.8)

which can then be used to approximate the distribution of the actual forecast

errors

n nx n+j -Xn+j ,  j fi,..,k. (3.9)

From the distributions of (3.8) we may obtain prediction regions for the forecasts

(3.5).

4. Consistent Parameter Estimates

In this section we give the details of the consistent estimation of the para-

meters of the KF model (1.1), (1.2). Recall that the system is in steady-state

and that the parameters O= {f,Q,R} satisfy the conditions (Al) and (A2) given in

Section 2.

The observation sequence may then be written as

=v + ljfOfjwt-j (4.1)

from which it follows that yt is a strictly stationary, zero-mean Gaussian se-

0t

.............................................................

" i '; "ii~i "'12"':i-.22-2"22"2•'ii'2........................................................".....................-...-....'... •"- ::.'i '•'-." ... "'
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quence with covariance matrix R + JO (

The estimates of t, Q and R are based on the matrices

-1 n
C~h n ytth h>O0 (4.2)
nl t~h+l yh

which in view of (4.1) and the Ergodic Theorem are ergodic and converge almost

surely (a.s.) to

A r (h) = (D h = D~ i R$ h > 0 C4. j)

where 6 h is the Kronecker 6 and r(h) = Cov(Y t y t-h ).

A estimate of t is suggested by the fact that E(Ytyt-2) = tEyt 2), >3

namely,

rnn +
=p n t3tt2(t3t1t-) n> (4.4)

* where by + we mean generalized inverse. Estimates of Qand R are suggested

by the facts that

B(2) "E{(yt-( yt_)(y -(y)}

B() E{yt-D2y t-2(vt D2 t-2)1

Q +R + +(D2 RD2'

which yield

R = {B (1) + (D (B(l) -B(2)) } (4.5)

Q = B (1) - R - (RV (4.6)

............ ....... ......... .......................
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provided that D is nonsingular.

We now state the following theorems which follow directly 
from the almost

sure convergence of (4.2) to (4.3). Denote the spectral norm of 4 by o( ).

Theorem 4.1 If p(D) <1, and if (D and Q are nonsingular, then 0 given in (4.4)
n

is strongly consistent for 4.

Theorem 4.2 If 4n is strongly consistent for 4 and if P(O) <1 then

i n n _n ^ )(yt_.iyt),
B n(i) - n t=3(y t nt-i t nt-i n>3 (4.7)

is strongly consistent for B(i), i1,2. Hence (4.4) and (4.7) provide strongly

consistent estimates for R and Q via (4.5) and (4.6) provided that (D and Q are

nonsingular.

Next, we exhibit the behavior of the suboptimal filter and forecasts in the

following theorems and corollary (cf. Theorem 2.4, Theorem 2.5, and Corollary 2.4

of AKKW). Denote positive (semi)-definite by p.(s).d.

Theorem 4.3 If Q is p.d. and if 4n,Qn,Rn are strongly consistent estimates of

t,Q,R respectively for which Q is p.d. and R is p.s.d. for all n>l, then

P - P and Kn - K a.s. as n -- where P and K are the estimates of the steady-statenn n

filter covariance and gain matrices, respectively.

Theorem 4.4 Let the hypotheses of Theorem 4.3 be satisfied. If in addition,

) 0), 1, then

Ix t^t,2lim n x t 0 a.s.
n-  t=l t-t -

_____ - .- -. . .. . . . ~ ~ ~ ka.- -



Corollary 4.1 If the hypotheses of Theorem 4.4 are satisfied, then

^~ It k^ t,

-ln n t ) x  0 a.s.li-nOo n t=1 xt+k  n

for any k>l.

Theorem 4.4 and its corollary will be useful in establishing the bootstrap

principle which is discussed in the next section. We conclude this section with

a statement about the limiting law of the matrices Cn(h) given by (4.2). The

following theorem follows from Hannan (1970, p. 228).

Theorem 4.5 Let Yt be generated by (4.1). Let cij(h) and Yij(h) denote the

ijth element of Cn(h) defined in (4.2) and r(h) defined in (4.3), respectively.

Then, for any integer H >0, the joint law of

vn {cij(h) -Yilh)} i,j 1,...,p; h= 1,2,...,R

converges to that of a zero-mean normal, the asymptotic covariance between c (i)

and ck(n) being

{ ik (r)yjt(r+n-m) + Y_ (r+n)Yjk(r-m)}. (4.8)

In general, the covariance of the c j(h) involves the forth order cumulants

of the process which vanish in this case since yt is Gaussian. For more details

concerning the asymptotic covariances of c ij(h), the reader is referred to

Hannan (1970) or Anderson (1971).

5. The Bootstrap Principle

In this section we justify the techniques established in Section 3. The

mathematical tools used in this section are those of Bickel and Freedman (1981).

7....
i" -:2 :;: - -'' .- - -. - : > ' ' i ' i . : >' -" - " - - " "- " " ". . ." " -' ' . " ? " . . . ,- i'-'- . -. --- :.. --..- -
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The estimate of 0 given in (4.4) may be rewritten as

n n

where

-i n I ( - -Itn 3 ; 1 (5.1

n t.3t-=lt2 t3t- t-2 . (5.1)

It is clear that the asymptotic distribution of rn(On -) =n An may then be

established via Theorem 4.5 and the almost sure convergence of (4.2) to (4.3).

Similarly, in view of (4.5) and (4.6), the asymptotic distributions of /n(R n-R)
An

and /nA(Qn-Q) may be established from the asymptotic distributions of

/ (B n(i)-B(i), i=1,2, which in turn may be established via Theorem 4.5 and the

almost sure convergence of (4.2) to (4.3).

For example, in the univariate case (p=l) it is seen that

n Var(n-) +{V(2,2) +2 V(1,l) -24 V(l,2)}y- 2 (1) (5.2a)

A 22 2 2
n Var(B (l)-B(l))-{ I+42 ) V(0,0) + 4 V(1,1) - 4(+0 )V(0,1)} (5.2b)

n
4 42 4 2 4

n Var(Bn (2)-B(2)) {(+4 )2V(0,0) +44 V(2,2) - 44 (l+4 )V(0,2)} (5.2c)

where we have the set

O

Vi,j) = o {y(r)y(r+i-J) +y(r+j)y(r-i)}.

Let E(l) be (5.2b) and E(2) be (5.2c). It can then be shown that

A -22 -4 -2 -2 1

A 2 2
n Var(Q -Q) {E(1) + (1+0 ) E(R) - 2(l+2 )Z(Rl)} (5.2e)

n

where we have set E(R) to be (5.2d), n Cov(B (1),B (2))-E(12) where
n n

C2)- 2 4 2 2 4 .E(12) Q {1+02 (i+ )W(0,0) -2 2(1+12)V(0,2) -2 01+ 4)V(1,0)+4 V(I,2)},-.:

-7.
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and n Cov(R n,B n(1)) -E(Rl) where

1 2 1-2

E(Rl) E (+4-)Z(l) - Z(12).

Now, let starred variables denote those obtained via the bootstrap sample

{yl,..o,Yn}. In this manner we denote

* n-l n h ,(Cnh t-h+l YtYt-h I h 53

as the bootstrap counterpart of C (h), equation (4.2), upon which all the esti-n
A A A A A

mates ' Qn Rn' B (1), and B (2) are based.

The bootstrap principle given in Section 3 is now stated in the following

theorem.

Theorem 5.1 Along almost all sample sequences, as n -, conditionally on the

data, for all h>O,

(1) Cn(h) - F(h) in conditional probability, and
n

(2) the conditional law of rn(C n(h)-C n(h)) merges with the unconditional law

of n (C (h)-F(h)).

n

From Theorem 5.l we may then establish that the conditional laws of

*n A n(Bn(i)-B (i)) i= 1,2 merge with the unconditional law of n A andn n n nl
nn(B n ()-B(i)) 1 - 1,2 by what is essentially Slutsky's theorem.

As previously suggested the proof of Theorem 5.1 is based on the Mallows

metrics argument of Bickel and Freedman (1981) and is fashioned after Freedman

(1984). If Rp is a p-dimensional space equipped with the Euclidean norm

and o>l, then dP (,N.) is the distance between probability measures Ii and v

in R defined as the infimum of 9 {fU-V } over all pairs of random vectors

U with law v and V with law v.

Before proving Theorem 5.1 we establish the following lemmas.

. * • ,.
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A A A A

Lemma 5,1 Let O= (D,Q,R) and 0 = (n'Qn R n) satisfy the conditions of Theorem

4.4. Let F be the emperical distribution function (e.d.f.) of the suboptimaln

t-1
innovations r , t-1,...,n generated by e and let F be the e.d.f. of the op-t n n

timal innovations r t-i t l,...,n generated by e. Then dP(F,F) 0 almost
t  2 n n

surely (a.s.) as n-oo.

A t- A t-1

Proof Noting that rt  =yx t and rt =Yt- , in view of Theorem 4.4, we

have

2 2 _n , ,^tl t12dP2(Fn Fn ) < n -  t.= l r -t  r rt- I

- ,n t I ^t-12

= t.n_ tl - xtl2 0 a.s.

as n-o. c

t-l

Lemma 5.2 Let F be the e.d.f. of the optimal innovations, r , t 1,...,n

t-land let F be the common distribution of r - I Then d p (F ,F) - 0 a.s. as n '=.
an2n

Proof Since the optimal steady-state innovations are iid (cf. Proposition 2.1),

this follows from Lemma 8.4 of Bickel and Freedman (1981). 0

Now, let M(F) be the law of C (h), h > 0, when the law of r t- is F.
n,h n t

Metrize the i's by dpxp and the F's by dp . For notational convenience, we drop
2

the subscript h from the 's and drop the superscript t-I from the rt's.

Lemma 5.3 The in (F) are equiuniformly continuous functions of F on2 2
S -{F:f IrI2dF(r) <c2 <o} (5.4)

~R p

* Proof The proof of this lemma is similar to Freedman (1984, Lemma 6.3). Fix

* F and F in S. Construct iid random vectors (rt,r*), t=l,...,n so that rt hast~ ) t =,., ota a

law F and rt has law F ,and

dP(F,F*)2 . E{Irt-rt 12}

2 t t
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See Bickel and Freedman (1981, Lemma 8.1). Build yt from the rt and yt from
* ,

the rt as in (2.3). Then, for h > 0

dPP[n (F), (F*)]h < E{In- (' * * Wt--hn Yt t-h -Ytt-h) ' '-

Ell ' * *'
< Elh

<E{Iytiy ~t-Yth' + E{yt-YtIlYth (5.5),;

Now, by the Cauchy-Schwartz inequality and the remarks following equation

(4.1)

E{y IYtl"s-Y * 1)2 < E 2ly 12} E{flys-y *2}

< c2 E{Iys-yi2}.

Using the fact that if U are independent random vectors, then

2• 2E{E U I }21 <E E{iU 12 + JE E{Uj1i2

we have that in view of equation (2.3)

E{Iys-y 1 2 =Ef I Dj *Kr r rj-l l~s-j-rs-j ) + ( )
sS S S S

< E{16 12 +E(16 121 Pk + IE{6 } 12 k (5.6)

where

8 r 1 -r t , P 1 1011 < 1, and k-fj Kuj

It is clear that (5.6) is small if F and F are close in d2. .

Now let Q2n,h(F) be the law of rn C n(h), h > 0, when the law of rt is F.

. .. . - .. "°
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Metrize the Q's by dpx p and the F's by dp. Again, we drop subscript h from the

s.2 
2

Lemma 5.4 The Q2 (F) are equiuniformly continuous functions of F on S (cf. 5.4).n

The proof of this lemma follows by bounding dxP IQ(F),Q (F*)] in much2n nch

the same way as drPE4 (F), 4) (F*)] was bounded in Lemma 5.3.
1 n n

For example, put A t(h) - - then

2 ,,_ n  12}

dpXP[Qn(F), 0n(F*)]2<E{I n A thlt(h)

<E{IA t(h) 12 } + n - I  tosE{JA t(h)-A s(h)l}. (5.7)

The first part of (5.7) is bounded as in (5.5) to (5.6). Furthermore, by the

Cauchy-Schwartz inequality

E{ IAt (h)As (h)(I } 2 < E(fAt(h)12}2

which may be bounded (independent of t) as in (5.6).

The proof of part (1) of Theorem 541 now follows from Lemmas 5.1, 5.2,

and 5.3. The proof of part (2) of Theorem 5.1 similarly follows from Lemmas

5.1, 5.2, and 5.4. For example, part (1) follows since the conditional law

of C*(h) given the data differs little in the sense of dPXP from the uncondi-n

tional law of C (h) by Lemma 5.3, because the e.d.f. of the suboptimal innovations,
n

F, differs little in the sense of d2 from the law of the optimal innovations,

F, by the combination of Lemmas 5.1 and 5.2. This concludes our proof and this

section.

*-' . " " .* , * . ... " ." .L .
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6. Examples

In this section we submit three univariate examples as emperical evidence

of the bootstrap's performance as an aid in Kalman filtering.

6.1 Simulation: Normal Errors

In this example we generated n =100 Gaussian observations from the model

(1.1), (1.2) with 4-0.8, Q-4.0, and R-1.0. Each parameter estimate was boot-

strapped L 100 times. Table 6.1.1 gives the summary results of 30 runs; the

true asymptotic values are obtained via (5.2) and are listed as standard errors.

The sample standard errors obtained by inserting estimates for the true values

into (5.2) are also listed.

TABLE 6.1.1
4% A p

SE() SE(Q) SE(R)

Mean St. Dev. Mean St. Dev. Mean St. Dev.

Bootstrap 0.106 0.030 1.242 0.256 0.779 0.361

Sample 0.153 0.068 1.749 0.421 1.070 0.198

True 0.083 1.269 0.843

Table 6.1.1: Summary of the standard errors of 30 runs of the bootstrap procedure
(L=I00) with n -10C normal observations from the model (1.1), (1.2) with 4 -0.8,
Q - 4.0, R= 1.0.

Table 6.1.2 contains the summary of the centered innovations from the 30 runs

described above. The standard deviation of the 100 innovations as well as the

first five autocorrelations are listed. From (2.1) we may calculate the true

standard deviation of the innovations, A = 2.35. Also, for large sample sizes

n from iid data, the autocorrelations have approximate means and standard devia-

tions of -1/n and i/'n, respectively.



18

TABLE 6.1.2

Sample True

STANDARD
DEVIATION 2.380+0.168 2.350

AUTOCORRELATION

LAG: 1 -0.006+0.213 -0.01+0.10

2 -0.007+0.069 -0.01+0.10

3 0.033+0.098 -0.01+0.10

4 -0.025+0.102 -0.01+0.10

5 -0.016+0.121 -0.01+0.10

Table 6.1.2: Summary (mean + st.dev.) of the innovations from 30 runs of the
Kalman Filter for n-100 normal observations from the model (1.1), (1.2) with
i-0.8, Q-4.0, R-1.0.

6.2 Simulation: Contaminated Normal Errors

In this example we generated n - 100 contaminated normal observations from

the model (1.1), (1.2) with $-0.8, Q-4.0(90%)+16.0(10%)-5.2, and R-1.0(90%)

+ 9.0(10%) -1.8. That is, the state errors are 90%N(0,4)+10%N(0,16) and the

observation errors are 90%N(0,1) +10%N(0,9). The true asymptotic variances of

the estimates must now include the forth cumulants of the error sequences (cf.

Hannan (1970) or Anderson (1971)) so that V(i,j) of (5.2) is adjusted to

V(ij)+Kv ,((i6j0 a a where Kw and Kv are the forth cumulants
of the state and observation error sequences, respectively, Y (j) is Cov(xt,xt+i),

a2 and a2 are the variances Q and R of the state and observation error sequences
w v

and 5,,6, are the Kronecker deltas.

Table 6 2,1 gives the summary results of 30 runs in which each parameter

estimate was bootstrapped L = 100 times. The true asymptotic standard errors

are obtained as described above and the sample standard errors are calculated

II

.- .- - . .- - L ° .. . -- ._-- ' _-_ ' ,_._.. .. ' ,- ._ " . .. ' ." . . " . . .
-
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by inserting estimates for the true values in (5.2).

TABLE 6.2.1

A A A

SE(0) SE(Q) SE(R)

Mean St.Dev. Mean St.Dev. Mean St.Dev.

Bootstrap 0.110 0.024 2.141 0.442 1.383 0.437

Sample 0.174 0.083 2.793 0.674 1.758 0.374

True 0.086 1.848 1.268

Table 6.2.1: Summary of the standard errors of 30 runs of the bootstrap procedure
(L = 100) with n =100 observations from the model (1.1), (1.2) with 0 =0.8, Q =5.2,
R -1.8 and 10% contaminated errors.

The summary of the centered innovations obtained in this simulation is

given in Table 6.2.2. In this case the true standard deviation of the innova-

tions is iP/- R 2.74.

TABLE 6.2.2

Sample True

STANDARD
DEVIATION 2.754+0.234 2.737

AUTOCORRELATION

LAG: 1 -0.014+0.019 -0.01+0.10

2 -0.009+0.061 -0.01+0.10

3 0.032+0.102 -0.01+0.10
4 -0.018+0.095 -0.01+0.10

5 -0.026+0.719 -0.01+0.10

Table 6.2.2: Summary (mean + st.dev.) of the innovations from 30 runs of the
Kalman Filter for n-100 observations from the model (1.1), (1.2) with -0.8,
Q-5.2, R-1.8 and 10% contaminated errors.

:I

-. .

. .' _: _. .. . .._ ._ ._ . - - ' _-.. ' .' .' . . '. . ... . . .. . .. .,...... . . .. ' . . . .. . . . .
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6.3 Annual Flows of the Gta River, Sweden

The following data are the annual flows of the G~ta River near Sjgtop-Vgnersburg

for the period 1901-1950. The data are in the form of modular values (actual

annual flows divided by the mean) as given by Salas et al. (1980).

Years

01-10 0.935 0.662 0.950 1.121 0.880 0.802 0.856 1.080 0.959 1.345

11-20 1.153 0.929 1.158 0.957 0.705 0.905 1.000 0.918 0.907 0.991

21-30 0.994 0.701 0.692 1.086 1.306 0.895 1.149 1.297 1.168 1.218

31-40 1.209 0.974 0.834 0.638 0.991 1.198 1091 0.892 1.020 0.869

41-50 0.772 0.606 0.739 0.813 1.173 0.916 0.880 0.601 0.720 0.955

Model (1.1), (1.2) was fitted to the data and the standard errors of the

estimates were obtained by conventional asymptotics (sample) and by the boot-

strap with L -100 iterations. The results are given in Table 6.3.1.

TABLE 6.3.1

Parameters

Q R
1. Estimates 0.9902 0.0273 0.0067

2. Standard
Errors:

Sample 2.5410 0.0714 0.0342
Bootstrap 0.0916 0.0088 0.0051

Table 6.3.1: Summary of parameter estimates and estimated standard errors,
sample and bootstrap (L=100), obtained by fitting (1.1), (1.2) to the Gota
River data.

We note that the standard errors obtained via conventional asymptotics

are unreasonably large and hence would be useless to the investigator of this

system. This situation is probably due to the fact that the signal is close to

nonstationarity (=0.99). The bootstrap however, provides more reasonable es-
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timates for the precision of the parameter estimates.

The bootstrap also allows us to obtain prediction intervals. We pre-

dicted x to be x 0.9029, where x 0.9118 is obtained by filtering

under , Q, and R. The filter was initialized by the mean and the variance

of the data. The bootstrap estimate of the prediction error SE(R51), is thus

^50
SE(P) x50 = 0.0835.

The steady state filter error P /2=E (x -x ) was estimated by fil-
tt

tering under , Q, and R and a value of 0.1847 was obtained. The standard error

t-i At-l
of the 50 innovations r yx and the es-

tn ( t t=,.,0 a .0

timated autocorrelation function for the first 12 lags is: -0.066, -0.374,

-0.037, 0.044, -0.157, 0.010, 0.101, 0.073, -0.069, 0.033, 0.057, and -0.066.

I
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